Pubblications:

  1. F. Fillastre, G. Veronelli, Lorentzian area measures and the Christoffel problem, to appear on Ann. Sc. Norm. Super. Pisa Cl. Sci., preliminary version on arXiv:1302.6169v2
  2. S. Pigola, G. Veronelli, On the Dirichlet problem for p-harmonic maps I: compact targets, to appear on Geometriae Dedicata (here an old expanded version)
  3. E. Hebey, G. Veronelli, The Lichnerowicz equation in the closed case of the Einstein-Maxwell Theory, Transactions of the Amer. Math. Soc. 366, Number 3, March 2014, Pages 1179–1193.
  4. M. Rimoldi, G. Veronelli,  Topology of steady and expanding gradient Ricci solitons via  f-harmonic maps. Differential Geom. Appl. 31 (2013), no. 5, 623–638.
  5. S. Pigola, G. Veronelli, Remarks on $L^{p}$-vanishing results in geometric analysis, International Journal of Mathematics 23 no. 1 (2012) 1250008, preliminary version on arXiv:1011.5413v1
  6. G. Veronelli, A global comparison theorem for p-harmonic maps in homotopy class, Journal of Mathematical Analysis and Applications, 391 (2012) 335-349, doi:10.1016/j.jmaa.2011.03.037, preliminary version on arXiv:1011.3703v1
  7. D. Valtorta, G. Veronelli, Stokes' theorem, volume growth and parabolicity, Tohoku Mathematical Journal, 63 no. 3 (2011), p. 397-412
  8. P. Mastrolia, M. Rimoldi, G. Veronelli, Myers' type theorems and some related oscillation results, Journal of Geometric Analysis, 22  no. 3 (2012) 763-779. doi: 10.1007/s12220-011-9213-0, preliminary version on arXiv:1002.2076v1
  9. S. Pigola, G. Veronelli, Lower volume estimates and Sobolev inequalitiesProc. Amer. Math. Soc. 138 (2010), p. 4479-4486, doi: 10.1090/S0002-9939-2010-10514-2
  10. G. Veronelli, Uniform decay estimates for solutions of the Yamabe equation, Geometriae Dedicata 155 no. 1 (2011) 1-20, doi:10.1016/j.difgeo.2011.01.002
  11. I. Holopainen, S. Pigola, G. Veronelli, Global comparison principles for the p-Laplace operator on Riemannian manifolds, Potential Analysis 34 no. 4 (2011), p. 371-384, doi: 10.1007/s11118-010-9199-4
  12. G. Veronelli, On p-harmonic maps and convex functions, Manuscripta Math. 131 (2010), no. 3-4, p. 537-546, ISSN: 0025-2611, doi: 10.1007/s00229-010-0335-7
  13. S. Pigola, G. Veronelli, Uniform decay estimates for finite-energy solutions of semi-linear elliptic inequalities and geometric applications, Differential Geometry and Its Applications Journal, 29 (2011), p. 35–54, doi: 10.1016/j.difgeo.2011.01.002
  14. S. Pigola, G. Veronelli, On the homotopy class of maps with finite p-energy into non-positively curved manifolds, Geometriae Dedicata 143 (2009), Issue 1, p. 109-116, ISSN: 0046-5755, doi: 10.1007/s10711-009-9376-z

Preprints:

Thesis:

Some slides:

I. Holopainen, S. Pigola, G. Veronelli, Global comparison principles for the p-Laplace operator on Riemannian manifolds, Reports in Mathematics, University of Helsinki. Preprint 504 (2009), submitte